ENHANCEMENT OF RIBULOSE 1,5-BISPHOSPHATE CARBOXYLATION REACTION BY CARBONIC ANHYDRASE

Yoshihiro SHIRAIWA⁺ and Shigetoh MIYACHI^{+*}

⁺Institute of Applied Microbiology and *Radioisotope Centre, University of Tokyo, Tokyo, Japan

Received 11 July 1979

1. Introduction

It has been established that algal cells grown with ordinary air (low- CO_2 cells) have a much lower K_m value for CO₂ in photosynthesis than those grown with CO₂-enriched air (high-CO₂ cells) [1-4]. Carbonic anhydrase (EC 4.2.1.1) is almost exclusively located in low-CO₂ cells of Chlorella and its activity in high-CO₂ cells is marginal, if any [5,6]. CO₂ concentration during growth does not affect ribulose 1,5-bisphosphate (Ru-P₂) carboxylase (EC 4.1.1.39) activity [3,6,7]. The app. $K_{\rm m}$ (CO₂) in low-CO₂ cells is greatly increased by Diamox, an inhibitor of CA [3,6]. These results indicate the possibility that the transport of CO₂ from outside the algal cells to the site of Ru-P₂ carboxylase may be accelerated by CA and that the observed difference in $K_{\rm m}$ (CO₂) may be due to the difference in CA activity.

We have found [8] that, irrespective of CO₂ concentration during growth, the rate of photosynthetic CO₂ fixation in *Chlorella vulgaris* 11 h cells in the presence of low NaHCO₃ concentrations was greatly enhanced by the addition of CA, while the initial rate of CO₂ fixation immediately after bubbling of ordinary air was suppressed by this enzyme. Since CA catalyzes the dehydration of bicarbonate and the

Abbreviations: CA, carbonic anhydrase; Diamox, 5-acetamide-1,3,4-thiadiazole-2-sulfonamide; ethoxyzolamide, 6-ethoxy-2-benzolesulfonamide; high-CO₂ cells, algal cells which were grown with CO₂-enriched air; low-CO₂ cells, algal cells which were grown with ordinary air; Ru-P₂, ribulose 1,5-bisphosphate

* Reprint requests should be addressed to: S. Miyachi, Radioisotope Centre, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan hydration of CO₂ in the suspending medium, the above evidence was taken as an indication that these algal cells absorb only free CO₂.

The only difference observed in the kinetics of CO₂ fixation between the above two types of Chlorella cells was that when CA was added to low-CO₂ cells under bubbling of air, the rate of CO₂ fixation, which was initially lowered, soon started to increase and then exceeded the rate in the absence of CA, while such a CA-induced increment in the rate of CO₂ fixation was not observed in high-CO₂ cells. Tsuzuki and Miyachi [9] derived the equations which express the changes in the concentrations of CO₂ and HCO₃ in the medium during the experiment as well as the time course of CO₂ fixation. Simulation of CO₂ fixation with such an equation supported the conclusion that Chlorella cells fix only free CO2, with the exception that both CO₂ and HCO₃ contributed to photosynthesis when low concentrations of CO₂ were bubbled through a suspension of low-CO₂ cells in the presence of CA. It is highly unlikely that HCO₃ is absorbed only when low-CO₂ cells are given low concentrations of CO₂ in the presence of CA. The equation also indicated that the concentrations of dissolved CO2 under these conditions are far lower than those under other conditions. Since the concentration of CO₂ near the cell surface of Chlorella would be still smaller than that in the suspending medium, it is possible that HCO₃ formed from CO₂ is converted again into CO2 via CA around the cell surface, and then incorporated into the algal cells under such conditions (indirect use of CO₂). We therefore assumed that the contribution of HCO₃ deduced by simulation is equated with the indirect use of CO₂.

Recently, we also found that only CO₂ can cross

the chloroplast envelope [10]. The substrate for Ru-P₂ carboxylase is known to be free CO₂ [11]. In high-CO₂ cells which show very small CA activity, therefore, CO₂ which crossed the chloroplast envelope would be used directly as the substrate for this enzyme. On the other hand, in the stroma of low-CO₂ cells where most of CA is located, the 'indirect use of CO₂' by Ru-P₂ carboxylase can occur in addition to the direct use of CO₂, and this enhances CO₂ fixation under very low CO₂ concentrations [6]. If this inference is the case, it can be expected that CO₂ fixation by Ru-P₂ carboxylase under bubbling of low concentrations of CO₂ should be enhanced by the addition of CA. The positive results obtained are described here.

2. Materials and methods

To make a buffer solution in which dissolved ¹⁴CO₂ and H¹⁴CO₃ are in equilibrium, air containing 400 or 4000 ppm ¹⁴CO₂ was bubbled through 4-5 ml of 100 mM Tris-HCl buffer solution (pH 7.5) containing 20 mM MgCl₂ and 4 mM dithiothreitol which was placed in a test tube kept at 20°C. The flow rate of the bubbling gas was ~40 ml/min. At intervals, portions of the buffer solution (10-30 μ l) were taken out and quickly transferred into a vial containing 3.5 ml of a mixture of dioxane-scintillator, methanol and monoethanolamine (8:3:1, v/v/v) and radioactivity dissolved in the buffer solution was determined with a liquid scintillation spectrometer (Packard 3380). The dioxane-scintillator contained 10 g PPO, 25 mg POPOP and 100 g napthalene in 1 liter of dioxane. Radioactivity in the buffer solution increased with time and the increase stopped 2-2.5 h after start of the bubbling when 14CO2 in the bubbling gas, that dissolved in the buffer solution, and H14CO3 in the same solution reached equilibrium. Then 500 μ l each of the buffer solution was transferred into small test tubes. Bubbling of ¹⁴CO₂ through the respective buffer solutions continued throughout the experimental period and the temperature was kept at 20°C. Five minutes after the transferral, 10 μ l 50 mM Ru-P₂ (final conc. 0.94 mM) and 10 µl CA solution (210 Wilbur-Anderson units; 100 µg protein) were added. In some experiments, CA was substituted for with bovine serum albumin solution (100 μ g) or deionized water. The

reaction was started by adding 10 μ l Ru-P₂ carboxylase solution (containing 15 μ g protein) which had been dissolved in the same buffer solution equilibrated with the same concentration of $^{14}\text{CO}_2$ as in the reaction medium and then kept at 0°C at least for 30 min. To study the effect of CA inhibitor, 50 μ l 50 mM Diamox or ethoxyzolamide was dissolved in 50 μ l CA solution. After the preincubation period, which is indicated in section 3, 20 μ l of the mixture was added instead of CA solution (final inhibitor conc. 0.94 mM).

At intervals after the start of the reaction, 50 µl of the reaction mixture was taken out with a microsyringe and quickly transferred into a vial containing 200 µl 6 N HCl. The vial was vigorously shaken by hand and 200 µl deionized water was added. Unfixed ¹⁴CO₂ was purged with N₂, then 4 ml liquid scintillator solution (Aquazol 2, Packard) was added. Radioactivity was determined as above. The pH value (pH 7.5) selected in this experiment is ideal neither for activator nor reaction of Ru-P₂ carboxylase [12]. The reason for adopting this pH value is that an impractically long period of gas-bubbling was necessary to establish the equilibrium between gaseous and dissolved ¹⁴CO₂ at higher pH values.

Ru-P₂ carboxylase (partially purified from spinach leaves), CA (from bovine erythrocytes), Ru-P₂ (tetrasodium salt) and ethoxyzolamide were products from Sigma, St Louis. Diamox was purchased from Japan Lederle, Tokyo.

3. Results and discussion

Figure 1 (left) shows that the rate of ¹⁴CO₂ fixation in the reaction medium in which the dissolved ¹⁴CO₂ had been in equilibrium with 400 ppm ¹⁴CO₂ (low-CO₂ medium) was greatly enhanced by the addition of CA. The same enhancing effect was observed even when the added CA was diluted 10 000-fold. The molecular weights of Ru-P₂ carboxylase and CA have been reported as 557 000 [13] and 31 000 [14], respectively. Therefore, CA given at the molar ratio of ~1/100 that of Ru-P₂ carboxylase could enhance the carboxylation reaction. In the reaction medium in which the dissolved ¹⁴CO₂ was in equilibrium with 4000 ppm ¹⁴CO₂ gas, the rate of ¹⁴CO₂ fixation by Ru-P₂ carboxylase was >10-times higher than that in the low-¹⁴CO₂ medium (fig.1,

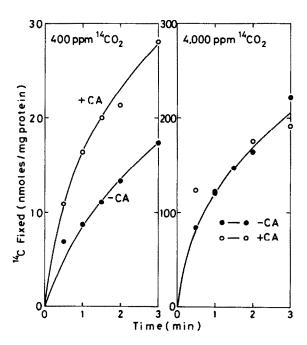


Fig.1. Effects of ¹⁴CO₂ concentrations on enhancement of Ru-P₂ carboxylation reaction by CA. ¹⁴CO₂ fixation was started after equilibrium between ¹⁴CO₂ in the bubbling gas and that dissolved in the reaction medium had been established.

right). However the addition of CA did not cause any enhancement in ¹⁴CO₂ fixation, indicating that CA enhances CO₂ fixation by Ru-P₂ carboxylase only under very low CO₂ concentrations.

Figure 2 shows that the enhancing effect of CA was abolished when this enzyme had been preincubated with Diamox for 30 min (compare A and C). The enhancing effect was also abolished when CA had been pretreated with ethoxyzolamide for 40 min (data not shown). Diamox did not exert any inhibitory effect when this inhibitor and CA were added to the reaction medium without preincubation (compare C and D). Figure 2 further shows that CA could not be substituted for with bovine serum albumin (compare B and E), indicating that the enhancement of CO₂ fixation by CA was not induced by its protective action against oxidation of Ru-P₂ carboxylase.

The above results clearly indicate that CO₂ fixation by Ru-P₂ carboxylase under low CO₂ concentrations (i.e., in a reaction medium in which the dissolved CO₂ was equilibrated with CO₂ in air) is greatly

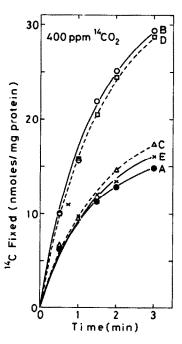


Fig.2. Effects of various reagents on CA-induced enhancement of Ru-P₂ carboxylation reaction. (A) No addition (+H₂O); (B) +CA; (C) +Diamox (final conc. 0.94 mM) which had been preincubated with CA for 30 min; (D) +Diamox and CA without preincubation; (E) +bovine serum albumin.

enhanced by the catalytic action of CA. It has been shown that $K_{\rm m}$ (CO₂) in low $K_{\rm m}$ form of Ru-P₂ carboxylase is 20 μ M, while that in high $K_{\rm m}$ form is >200 μ M [15]. The CO₂ concentration in the medium in equilibrium with 400 ppm CO₂ gas at 20°C and pH 7.5 is 15.7 μ M [16]. According to the data in [12], Ru-P₂ carboxylase would have been only partially activated under the CO₂ concentration and pH value adopted during the preincubation in the present experiment. Therefore, the indirect supply of CO₂ by CA will not only increase the supply of substrate (CO₂) but also activate Ru-P₂ carboxylase.

Acknowledgements

This work carried out at the Radioisotope Centre of the University of Tokyo was supported by grants from the Japanese Ministry of Education, Science and Culture and the Ministry of Agriculture, Forestry and Fisheries (GEP-54-II-1-2).

References

- [1] Hogetsu, D. and Miyachi, S. (1977) Plant Cell Physiol. 18, 347-352.
- [2] Findenegg, G. R. (1976) Z. Pflanzenphysiol. 79, 428-437.
- [3] Berry, J., Boynton, J., Kaplan, A. and Badger, M. (1976) Carnegie Inst. Year Book 75, 423-432.
- [4] Badger, M. R., Kaplan, A. and Berry, J. A. (1978) Carnegie Inst. Year Book 77, 251-261.
- [5] Graham, D., Atkins, C. A., Reed, M. L., Patterson, B. D. and Smillie, R. M. (1971) in: Photosynthesis and Photorespiration (Hatch et al. eds) pp. 267-274, Wiley-Interscience, New York.
- [6] Hogetsu, D. and Miyachi, S. (1979) Plant Cell. Physiol. 20, 747-756.
- [7] Reed, M. L. and Graham, D. (1977) Aust. J. Plant Physiol. 4, 87-98.

- [8] Miyachi, S. and Shiraiwa, Y. (1979) Plant Cell Physiol. 20, 341-348.
- [9] Ysuzuki, M. and Miyachi, S. (1979) Proc. Ann. Meet. Jap. Soc. Plant Physiologists, Nagoya, p. 2.
- [10] Shiraiwa, Y. and Miyachi, S. (1979) FEBS Lett. 95, 207-210.
- [11] Cooper, T. G., Filmer, D., Wishnick, M. and Lane, M. D. (1969) J. Biol. Chem. 244, 1081-1083.
- [12] Lorimer, G. H., Badger, M. R. and Andrews, T. J. (1976) Biochemistry 15, 529-536.
- [13] Paulsen, J. M. and Lane, M. D. (1966) Biochemistry 5, 2350-2357.
- [14] Lindskog, S. (1960) Biochim. Biophys. Acta 39, 218-226.
- [15] Andrews, T. J., Badger, M. R. and Lorimer, G. H. (1975) Arch. Biochem. Biophys. 171, 93-103.
- [16] Umbreit, W. W., Burris, R. J. and Stauffer, J. F. (1949) in: Manometric Techniques and Tissue Metabolism, pp. 21-29, Minneapolis, MN.